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Accelerated flow past a NACA 0015 aerofoil is investigated experimentally and
computationally for Reynolds number Re =7968 at an angle of attack α = 30◦.
Experiments are conducted in a specially designed piston-driven water tunnel capable
of producing free-stream velocity with different ramp-type accelerations, and the DPIV
technique is used to measure the resulting flow field past the aerofoil. Computations
are also performed for other published data on flow past an NACA 0015 aerofoil in
the range 5200 � Re � 35 000, at different angles of attack. One of the motivations is
to see if the salient features of the flow captured experimentally can be reproduced
numerically. These computations to solve the incompressible Navier–Stokes equation
are performed using high-accuracy compact schemes. Load and moment coefficient
variations with time are obtained by solving the Poisson equation for the total pressure
in the flow field. Results have also been analysed using the proper orthogonal
decomposition technique to understand better the evolving vorticity field and its
dependence on Reynolds number and angle of attack. An energy-based stability
analysis is performed to understand unsteady flow separation.

1. Introduction
Unsteady viscous flow has been studied experimentally and computationally for a

long time owing to its scientific interest and technological applications. In general,
unsteady flows are divided into two categories. In the first category, one studies
the response of viscous flows to dynamic disturbances and, in the second category,
the unsteady fields that are created by background disturbances, amplified and self-
sustained, are studied. We are concerned here primarily with the former while the
second aspect is known to be automatically introduced at high angles of attack,
with or without flow acceleration. A better understanding of unsteady effects is
necessary for the prediction and control of such flows. These effects are crucial to
aircrafts, helicopters, turbomachineries and other engineering applications as discussed
in McCroskey (1982).

Externally driven viscous flow can be divided into two broad classes depending on
the changes brought about in their aerodynamic environment:
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(i) when a body is moving in oscillating or plunging motion with a prescribed
acceleration and

(ii) when a body is held fixed and the oncoming flow is allowed to change. e.g. as
in translational acceleration or deceleration.

The case of translational acceleration is important as it relates to the flow establish-
ment process in an experimental facility and in real-time applications, as in aero-
dynamic decelerators. The acceleration and deceleration process can induce large
transient loads, limiting the performance and even leading to failure of the device. In
this context, the most studied case is the impulsive start of the body. The reason behind
the assumption of impulsive motion is that in many practical applications this is
adequate and, furthermore, it results in significant simplifications of the mathematical
formulations of the problem and can be used for validation of various numerical
methods. Early studies of typical impulsive viscous flow problems are due to Stokes
(1851) and Rayleigh (1911) and involved obtaining the solution for an infinite flat
plate started impulsively into motion in its own plane. Stuart (1963) and Schlichting
(1979) have discussed another class of problems involving the establishment of free-
stream speed with uniform acceleration. The problems of the boundary layer over
a flat plate and circular cylinder with uniform acceleration were solved initially by
Blasius and later extended by Görtler (see Schlichting 1979) for a general class of
non-uniform acceleration. Collins & Dennis (1974) and Badr, Dennis & Kocabiyik
(1996) have studied the symmetrical flow past accelerated circular cylinders. They
obtained analytical and computational solutions of the Navier–Stokes equations in
the boundary layer coordinates using a perturbation series technique.

In numerical computations one often makes an implicit assumption that the long-
time dynamics of the flow is independent of the initial start-up process. In Gendrich,
Koochesfahani & Visbal (1995) and Koochesfahani & Smiljanovski (1993) it has
been shown that for a dynamically pitching aerofoil, the load and surface pressure
distribution on the aerofoil suction surface is affected only for a short time after the
end of the initial acceleration period. Lugt & Haussling (1978) have studied the effect
of acceleration on an ellipse of thickness to chord ratio (t/c) of 0.1 and concluded
that after the acceleration phase is over, differences in the flow characteristics among
various types of accelerations vanish rapidly. However, it should be noted that in
both Gendrich et al. (1995) and Lugt & Haussling (1978), the acceleration ended
before leading-edge separation began. Sarpkaya (1991) has studied the effect of
uniform acceleration for flow past a circular cylinder. He defined a non-dimensional
acceleration parameter Ap given by

Ap = D
dU∞

dt

/
Ū 2

∞

where D is the cylinder diameter, Ū∞ is the final velocity and U∞ is the instantaneous
velocity. He noted that for Ap > 0.27, the drag coefficient beyond the period of initial
acceleration does not measurably depend on Ap and the flow can be considered as
impulsively started. The drag overshoot and the relative displacement of the cylinder
to reach this value remain more or less the same. For Ap < 0.27, the drag overshoot
reduces to its commonly accepted quasi-steady value as soon as the acceleration is
removed. However, Sarpkaya (1991) could not get repeatability of lift force for his
experiments and stated that the lift force depends on initial disturbances that were
not maintainable during different experimental runs. Furthermore, he argued on the
basis of his experimental results that the manner in which acceleration is removed
from the flow to sustain a constant velocity turned out to be more important than
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the manner in which the acceleration is imposed. For a dynamically pitching aerofoil,
Choudhuri & Knight (1996), Currier & Fung (1992) and Carr & Chandrasekhara
(1996) have noted that the compressibility is one of the major parameters affecting the
flow. For the translational accelerations studied here, compressibility does not play
a major role, as noted by comparing the peak suction values for the present cases
to the results of Currier & Fung (1992). In the present work, we concentrate on the
effects of translational flow acceleration at low Reynolds numbers for incompressible
flow past aerofoils at high angles of attack.

One of the earliest computational works on the starting solution for flow past
an aerofoil is by Mehta & Lavan (1975) who studied the problem of laminar flow
past an impulsively started 9 % thick Joukowski aerofoil at Re = 1000. The flow past
the aerofoil was seen to be dominated by the formation, growth and breakup of
separation bubbles at this Reynolds number. Depending on the Reynolds number
and angle of attack, the unsteady separated flow may undergo laminar to turbulent
transition to form long or short bubbles. Whereas the short bubbles have only a small
effect on the pressure distribution, the long bubbles result in a pressure distribution
that is different from the inviscid value. Ohmi et al. (1991) have presented some
experimental and computational results for a NACA 0012 aerofoil at 30◦ angle
of attack for Re =3000. Nair & Sengupta (1998) have presented results for initial
times with different start-up processes. Morikawa & Grönig (1995) have studied,
experimentally and computationally, the unsteady aerodynamics of a NACA 0015
aerofoil and provided a record of tunnel free-stream speed as a function of time
for the starting process. In the present study, we compute and compare with this
experimental result for uniform flow past a NACA 0015 aerofoil at an angle of attack
of 30◦ for Re = 35 000 for the given time history of the free-stream speed. A tangent
hyperbolic representation was closest to the measured speed distribution in Morikawa
& Grönig (1995) and is given by

U∞(t) = Ū∞ tanh

(
t∗

τ ∗

)
(1.1)

with Ū∞ the final steady tunnel speed and τ ∗ = 50 ms, as given in the reference.
All calculations reported here are performed with times non-dimensionalized by the
convection time scale, constructed from Ū∞ and the chord of the aerofoil, and are
represented by quantities without asterisks. For the numerical procedure followed in
Morikawa & Grönig (1995), acceleration of the mean flow was accounted for by an
additional source term in the x-momentum equation derived from the time derivative
of (1.1). In an earlier experimental work, Freymuth (1985) studied the effect of uniform
acceleration on flow past a NACA 0015 aerofoil at different Reynolds numbers and
angles of attack by flow visualization. Note that in that work, the Reynolds number
was defined in terms of the uniform acceleration and the chord of the aerofoil. His
results are reported for Reynolds number held constant, and thus by our convention
the Reynolds number based on instantaneous convection speed will vary linearly with
time.

Here, we investigate constant acceleration cases (ramp-start) as shown in figure 3
below. Zaman, McKinzie & Rumsey (1989) have shown, based on their experimental
results, that the flow past aerofoils near stall can be two-dimensional. This is also
supported in Lin & Pauley (1996), Huang & Lin (1995) and Brendal & Mueller (1988)
for results obtained at early times after the flow start-up. In the present investigation,
our focus is mainly on the flow onset process and the results obtained from the
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solution of two-dimensional Navier–Stokes equation are considered adequate. For
flow over aerofoils near stall at high Reynolds numbers, the unsteadiness is largely
due to the low-frequency events of shed vortices and their convection.

A stream function–vorticity formulation is preferred for the computations here
because the smaller number of unknowns compared to using primitive variables
makes higher resolution calculations possible. Also, this formulation ensures exact
satisfaction of mass conservation, making a smaller demand on computational
requirements than needed in the primitive variable formulation. Furthermore, a
higher accuracy is achieved by using compact schemes as developed and used in
Sengupta (2004) and Sengupta, Vikas & Johri (2005) for the discretization of nonlinear
convection terms of the vorticity transport equation. An orthogonal numerical grid
generation technique developed in Nair & Sengupta (1998) is used here, which helps
to further reduce numerical error. In that work, some comparisons are made with
the results of Morikawa & Grönig (1995) for flow past a NACA 0015 aerofoil at a
Reynolds number of 35 000 and 30◦ angle of attack. The calculation was performed
using the same formulation, but with a third-order upwinding scheme.

In the present work, we further investigate the constant acceleration case experimen-
tally for Re = 7968 and α = 30◦ for different acceleration parameters, and the details
are given in § 2. In § 3, the formulation and the numerical methods used for the
computations are given. The following cases are studied here, when flow accelerates
from zero velocity at t = 0:

A. A uniform acceleration case with Re = 7968, α =30◦ and τ =3.75 for which the
experimental results are provided in § 2.

B. A uniform flow with a tangent hyperbolic dependence of free-stream speed on
time for Re = 35 000, α = 30◦ and τ = 0.6. This case corresponds to the experiments
of Morikawa & Grönig (1995).

C. A uniform flow using a ramp start for Re = 35 000, α = 30◦ and τ = 0.5 to com-
pare with the case B.

D. A uniform acceleration for Re = 5 200, α = 60◦ and 90◦ with very large τ . This
corresponds to the experiments of Freymuth (1985). The definition of the Reynolds
number for this case is given in § 4.3.

In § 4, computational and various experimental results are discussed case by case.
In § 5, proper orthogonal decomposition of two cases is presented for different angles
of attack and Reynolds number to distinguish the flow structures at high angles of
attack. The paper concludes with a summary in § 6.

2. Experimental setup and procedures
The experiments were conducted in a piston-driven closed-circuit water tunnel

in the Fluid Mechanics Laboratory of the National University of Singapore. A
schematic drawing of the tunnel is presented in figure 1. Unlike the conventional water
tunnel with a continuous flow, this tunnel is driven by a square Plexiglas piston of
198 mm × 198 mm, which pushes the water ahead of it as it slides along the test
section with the same dimensions. The piston is driven by a micro-stepper motor
(Sanyo Denki, Model 103-8960-0140) via a ball and screw mechanism, which converts
the rotational motion into a linear motion of the piston. The motor, which is powered
by a micro-steps driver (2D88M) and controlled by TTL signals generated by a Lab-
view Program in a PC, can achieve 10 000 micro-steps per revolution or 0.036◦ per
step. With a pitch of the ball-screw of 25 mm, this translates into a linear resolution of
3.125 × 10−4 mm per step. For safety reasons, the piston is confined to move between
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Figure 1. A schematic drawing of the experimental set up.

the two limit switches indicated in figure 1 and has a maximum traversing distance
of 350 mm. A unique feature of this facility is its ability to execute any predetermined
piston motion including that of a power-law: U∞ = atm, where U∞ = piston/free-stream
velocity, t = elapsed time and, a and m are predetermined constants.

The NACA 0015 aerofoil used in the present investigation has a chord length (c) of
80 mm and spanned the width of the test section giving an aspect ratio (width/chord)
of 2.475. The aerofoil was mounted about its quarter-chord point in the middle of
the test section using a rotational mechanism, which allows any predetermined angle
of attack to be set from outside the water tunnel. To minimize the effect of the
corner vortex generated between a moving piston and a stationary wall, the minimum
distance between the piston and the model support is kept at 350 mm (or 4.38c).

To conduct particle image velocimetry (PIV) measurements, a continuum Nd:YAG
twin cavity laser system capable of delivering 2 × 300 mJ pulses of 6 ns duration at
10 Hz was used as the illumination source. It was found that operating the laser at
frequencies other than 10 Hz would lead to significant deterioration in beam quality.
A cylindrical lens was used to expand the laser beam into a thin sheet of 2 mm
thickness before it was directed along the centreline of the test section bisecting the
test model.

Since the experiments were conducted in an air-conditioned room with a tem-
perature of 23 ◦C, the water in the tunnel had to be left overnight to attain the room
temperature. Dantec polyamide particles with a nominal diameter of 20 µm and a
density of 1000 ± 30 kg m−3 were used to seed the flow. The particles were prepared
according to the technique described in Soria et al. (2003) so that any particles with
specific gravity greater or less than one were discarded.

A PCO Pixelfly digital CCD camera with an array of 1280 × 1024 pixels was used
to record PIV images using a double-shutter mode. A 105 mm Micro-Nikkor lens
set at an aperture of f 2.8 and a reproduction ratio of 10.24 was used for all the
investigations reported here. Since the laser illumination operated optimally at 10 Hz,
the recordings had to be carried out in 100 ms or integral multiple time intervals tp of
it (see figure 2). Here, tp was fixed at 200 ms which corresponds to the acquisition rate
of 5 image pairs per second. The time interval (�t) between the two laser pulses A and
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Figure 2. Temporal parameters for the laser.

B was determined based on the maximum free-stream velocity. Due to the restriction
on the laser operating frequency of 10 Hz, the number of captured PIV images for
each flow condition depended on the velocity profile, the maximum velocity and the
displacement of the piston.

To ensure correct synchronization of the operation of the piston tank, the laser and
the PIV camera, a master control PC2 was used (figure 1). Prior to the experiment,
PC1 and PC3, which control the operation of the laser and the motor, respectively
were set to ‘Slave mode’ or ‘External triggering mode’. Both the PCs waited for the
triggering TTL signal from PC1 before activating their respective devices. All
communications between PCs were via an Ethernet cable interface.

The multigrid cross-correlation digital PIV (MCCDPIV) algorithm used to process
the raw PIV images is the same as used in Soria et al. (2003). Detailed discussion of
the data analysis and experimental uncertainty can be found in Soria et al. (2003) and
is not repeated here. Briefly, a Gaussian function estimator is used for calculating the
location of the cross-correlation peak. The interrogation area (IA) was 32 × 32 pixels
with 50 % overlap, and the maximum displacement of the flow field was ensured to
be less than 20 % of the IA. All the output files were in Tecplot-readable format.

The experiments described here are for the aerofoil fixed at α = 30◦ and the oncom-
ing flow subjected to a predetermined linear accelerations from rest of 33.33, 50 and
100 mms−2. Figure 3 shows the corresponding velocity profiles used and the locations
of the discrete symbols indicate the instants at which PIV measurements were taken. In
all cases, the maximum free-stream velocity (U ∗

∞) was 100 mms−1 giving a maximum
Reynolds number (U∞c/ν) of 7968, where ν is the kinematic viscosity of water.

The opacity of the aerofoil prevented laser illumination below it, and thus this
region is excluded from the MCCDPIV analysis here. Also, each realization was
repeated 50 times for subsequent ensemble-averaging.

In figure 4, the ensemble-averaged velocity fields are shown for the indicated
acceleration rates. In each of the cases, results are shown till the time when U∞(t∗)
reaches a value of 100 mms−1. It is clearly evident that the formation of separation
bubbles and their evolution depends upon the length of time the acceleration is
applied and not upon the strength of the acceleration, a point that was mentioned
in Sarpkaya (1991) and will also be verified by our calculations. However, at the
same non-dimensional times the separation effects are accentuated for the higher
acceleration case, as can be seen at t = 1.5 for cases (a) and (b). In figure 5, the
ensemble-averaged vorticity distributions are shown for the same three acceleration
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Figure 3. Imposed piston velocity profiles for accelerations: a = 33.33mm s−2 (open rectangle),
a = 50 mm s−2 (filled circle), a = 100mm s−2 and (filled triangle) and constant acceleration
of a = 100 mm s−2 followed by a constant velocity at 100mm s−1 (open circle).

cases. Here, one can see the effects of the time of application of acceleration on
the separation, compared to the effect of the strength of the acceleration. Thus, from
figures 4 and 5 it is seen that the maximum effect of acceleration is noted for the case of
A33 with 33.33 mms−2. Corresponding computations for this case are presented below.

3. Computational formulation and methods
Here, unsteady two-dimensional Navier–Stokes equations are solved in terms of

stream function and vorticity to study the effects of acceleration on flow past an
aerofoil at high angles of attack at moderate Reynolds numbers. The formulation
and auxiliary conditions are presented next.

3.1. The governing equation and formulation

The unsteady Navier–Stokes equations for incompressible two-dimensional flows in
stream function and vorticity formulation are

∇2ψ = −ω, (3.1)

∂ω

∂t
+ ∇ · (ωV ) =

1

Re
∇2ω, (3.2)

where the stream function is related to the velocity field by

V = ∇ × ψ . (3.3)

The only non-zero component of vorticity for the two-dimensional flow is given by

ω = |∇ × V |k. (3.4)

Unless stated otherwise, all lengths are non-dimensionalized with respect to the
chord of the aerofoil and the velocities by the final free-stream speed (Ū∞).
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Figure 4. Ensemble-averaged velocity fields for three different accelerations. Time increases
from top to bottom, and acceleration increases from left to right. (a) a = 33.33 mm s−2,
(b) a = 50 mm s−2, (c) a =100 mm s−2. t = t∗U ∗

∞/c represents the non-dimensional time.

Equations (3.1) and (3.2) are solved in the transformed plane obtained by a
numerically generated O-grid following the methodology of Nair & Sengupta (1998).
The governing stream function equation and vorticity transport equation are given in



Accelerated flow past a symmetric aerofoil 263

t = 0.75, U∞ = 20 mm s–1 t = 0.50, U∞ = 20 mm s–1 t = 0.25, U∞ = 20 mm s–1

t = 1.50, U∞ = 40 mm s–1 t = 1.00, U∞ = 40 mm s–1 t = 0.50, U∞ = 40 mm s–1

t = 2.25, U∞ = 60 mm s–1 t = 1.50, U∞ = 60 mm s–1 t = 0.75, U∞ = 60 mm s–1

t = 3.00, U∞ = 80 mm s–1 t = 2.00, U∞ = 80 mm s–1 t = 1.00, U∞ = 80 mm s–1

t = 3.75, U∞ = 100 mm s–1 t = 2.50, U∞ = 100 mm s–1 t = 1.25, U∞ = 100 mm s–1

0.8

(a) (b) (c)

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6

x/c x/c x/c

0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

y
c

y
c

y
c

y
c

y
c

Figure 5. Ensemble-averaged vorticity contour plots for three different accelerations. Time
increases from top to bottom, and acceleration increases from left to right. (a) a = 33.33 mm s−2,
(b) a = 50 mm s2, (c) a = 100 mm s−2. t = t∗U ∗

∞/c represents the non-dimensional time.

the transformed (ξ, η)-plane by

∂

∂ξ

[
h2

h1

∂ψ

∂ξ

]
+

∂

∂η

[
h1

h2

∂ψ

∂η

]
= −h1h2ω, (3.5)
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h1h2

∂ω

∂t
+ h2u

∂ω

∂ξ
+ h1v

∂ω

∂η
=

1

Re

[
∂

∂ξ

(
h2

h1

∂ω

∂ξ

)
+

∂

∂η

(
h1

h2

∂ω

∂η

)]
, (3.6)

where h1 and h2 are scale factors of the transformation, given by h2
1 = (x2

ξ + y2
ξ ) and

h2
2 = (x2

η + y2
η).

In the transformed plane, the components of velocity are,

u =
1

h2

∂ψ

∂η
, v = − 1

h1

∂ψ

∂ξ
. (3.7)

The stream function–vorticity formulation provides higher accuracy with respect to
incompressibility assumption, but it does not yield the pressure field. Currier & Fung
(1992) and Ramiz & Acharya (1992) have used experimental pressure coefficients to
study unsteady separation. There is a need to accurately evaluate the pressure field
better to understand unsteady flows since pressure fluctuations contain the signature
of coherent vortices located at the pressure trough. It has also been noted by Lesieur &
Metais (1996) that low-pressure regions are better indicators of the coherent vortices
than the high vorticity regions.

Thus, we solve the Poisson equation for the total pressure to obtain the pressure
field over the full computational domain. The governing Poisson equation for pressure
is obtained by taking the divergence of the Navier–Stokes equation in primitive
variables. For an orthogonal curvilinear coordinate system, this is

∂

∂ξ

(
h2

h1

∂P

∂ξ

)
+

∂

∂η

(
h1

h2

∂P

∂η

)
=

∂

∂ξ
(h2vω) − ∂

∂η
(h1uω). (3.8)

This formulation in an orthogonal grid was used earlier in Nair & Sengupta (1997a),
which can be consulted for further details. The physical and computational domains
for the present investigation are shown in figure 6(a). The numerically obtained
orthogonal grid is shown in figure 6(b). Note that a similar calculation for the effect
of acceleration was reported in Nair & Sengupta (1997b), where a third-order upwind
scheme (as given in Nair & Sengupta 1997a) was used with similar grids. In Sengupta
et al. (2006), the same formulation has been used for flow past an aerofoil executing
flapping and hovering motion using compact schemes. It is well known that compact
schemes provide much higher resolution than explicit higher-order upwind schemes,
thus enabling us to obtain numerical solutions with significantly enhanced accuracy.

3.2. Initial and boundary conditions

On the solid boundary ABC (in figure 6) the no-slip conditions apply,

ψ = constant,
∂ψ

∂η
= 0. (3.9)

These conditions also fix the wall vorticity, which is required as the boundary
condition for the vorticity transport equation. Periodic boundary conditions are
applied at the cuts (AF and CD) for all variables. For the stream function equation,
at the outer boundary the Neumann boundary condition is used: ∂ψ/∂η = U∞∂y/∂η.
To solve the vorticity transport equation, a fully developed condition is used as the
boundary condition: ∂ω/∂η = 0. From equation (3.5), wall vorticity is calculated as

ω|body = − 1

h2
2

∂2ψ

∂η2

∣∣∣∣
body

. (3.10)
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Figure 6. (a) Physical and computational domain and (b) the (257 × 301) grids used for the
NACA 0015 aerofoil. Only a close-up of the grid is shown.

For the Poisson equation (3.8), the Neumann boundary condition as obtained from
the normal (η)-momentum equation is used on the surface and the outer boundary,
whereas the periodic boundary condition applies at the cuts.

3.3. Numerical method

The numerical method used here is well-tested and has already been used in Sengupta,
Ganeriwal & De (2003) and Sengupta et al. (2006). The finite difference form of
various derivatives in (3.5) and (3.6) is obtained by employing central differencing,
except the convection terms of (3.6), which has been discretized using high-accuracy
compact schemes outlined in Sengupta et al. (2003). In compact schemes, a general
recursion relation of the following form is used to evaluate first derivatives (indicated
by primed quantities):

bj−1u
′
j−1 + bju

′
j + bj+1u

′
j+1 =

1

h

2∑
k=−2

aj+kuj+k. (3.11)
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In the periodic ξ -direction, the truncation error is minimized in the least-squares
sense, by choosing the following coefficients in the above equation: bj±1 =
0.3793894912, bj = 1, aj±1 = ± 0.7877868, aj±2 =±0.0458012 and aj = 0. The periodic
tridiagonal system obtained by the application of (3.11) for different nodes is solved
to evaluate the required ξ -derivatives in this direction.

In the non-periodic η-direction, one cannot apply the stencil (3.11) for all the nodes.
For example, stable boundary closure schemes are required for the first and second
node. The ones used are given by

u′
1 =

(−3u1 + 4u2 − u3)

2h
, (3.12)

u′
2 =

[(
2β2

3
− 1

3

)
u1 −

(
8β2

3
+

1

2

)
u2 + (4β2 + 1)u3 −

(
8β2

3
+

1

6

)
u4 +

2β2

3
u5

]/
h,

(3.13)

with β2 as a parameter to be chosen to ensure accuracy and stability. Similarly,
boundary closure schemes are used for j = (N −1) and j = N with another parameter,
βN−1. For the boundary closure, we have used β2 = −0.09 and βN−1 = 0.09. Application
of (3.11) and the boundary closure schemes for different nodes in the η-direction leads
to a tridiagonal system that can be solved to obtain the derivatives with respect to
η for the vorticity. To numerically stabilize the computations, an explicit fourth
dissipation term is added to the calculated first derivatives (see Sengupta et al. 2006
for further details).

4. Results and discussion
The orthogonal grids of size (257 × 301) were generated for the aerofoil by the

procedure developed in Nair & Sengupta (1998) and shown in figure 6(b), for few
representative grid lines close to the aerofoil. The grid generation method is based
on the solution of the Beltrami equation, a hyperbolic partial differential equation of
order two, in which, starting from the aerofoil surface, constant-η lines are generated
by marching outwards with prescribed grid spacing in the hyperbolic direction. This
ability to prescribe the spacing in the normal direction is an added advantage of
the grid generation method used and helps to provide adequate resolution in the
wall-normal direction and in the wake region. Also, the spacing in the normal
direction is chosen in such a way that the truncation error does not give rise to
spurious dispersion and dissipation. This is one of the important aspects of the
present solution methodology. The outer boundary is located 12 chords away from
the body. The present orthogonal grid needs fewer terms to be discretized than a
non-orthogonal grid, which reduces the sources of truncation error. For the results
presented here, a grid spacing of 0.00001c was used in the direction normal to the
aerofoil surface.

The time integration of VTE uses a time step of �t = 0.00001 for the calculations
presented. The choice of the time step was dictated by the required accuracy and to
avoid numerical instability for the explicit four-stage Runge–Kutta method used. Also,
it should be noted that the loads are obtained by the vorticity values and the pressure
values on the surface obtained by solving the pressure Poisson equation. One of the
advantages of the present method is that the pressure field can be calculated off-line,
which increases the speed of the overall computations. As noted earlier, the purpose
of the computation is to aid in understanding the effects of different levels and types
of acceleration on the growth and shedding of vortices. Before discussing these, it



Accelerated flow past a symmetric aerofoil 267

is necessary to introduce some general terminologies used in this section. A surface
bubble is considered closed if it is completely enclosed by the body streamline. Addi-
tional closed streamline loops can also be present inside an enclosed bubble, and their
centres are different from the centre of the enclosed bubble. Bubbles are defined as
clockwise or anticlockwise depending on the direction of the velocity vector associated
with the closed streamline inside them. Similarly a vortex is represented by a closed
equivorticity line. Perry, Chong & Lim (1982) provide a descriptive understanding of
near-wake vortex formation, and have used the term alleyway to describe the vortex
shedding phenomena by examining instantaneous streamlines. Alleyway refers to an
instantaneous passage in the near-wake region where the streamlines upstream do
not begin or end at critical points (i.e. points where all velocity components are zero).

Some preliminary results were presented by Nair & Sengupta (1997b, 1998) and
compared their simulations with the corresponding experimental results at different
Re. For a truly impulsive start, the conditions at t = 0 should correspond to that of
an inviscid flow. Different types of flow start-up that are studied here are shown in
figures 7(a) and 7(b). In figure 7(a), two different approaches to achieve the same final
velocity are presented: the first one is that used in Morikawa & Grönig (1995) and
given by equation (1.1); the second is the case of a ramp-start that takes the flow
from zero to the final velocity by a uniform acceleration. In figure 7(b), the piston
velocity–time profile used in the present experiment and computation is presented
for the A33 case. In the experiments, a constant accelerated start is followed by a
constant deceleration, so that the flow velocity is zero after 6 s. In all the experiments,
the maximum velocity attained is 100 mm s−1 and computations are performed here
only for the case a = 33.33 mms−2. While the velocity shown in figure 7(b) corresponds
to the piston velocity, we have also measured the actual flow velocity at the centreline
of the tunnel, and the velocity–time record is shown in figure 7(c). Note that the
kinks in the velocity profile in figure 7(c) are caused by an uneven expansion of the
square Plexiglas piston tank when filled with water. In air, the piston slides smoothly
along the walls of the tank, but with water, the uneven absorption of the water by
the Plexiglas wall plus the weight of the water distorts the test section slightly from
its original square shape. Attempts were made to rectify the problem by trimming
the dimension of the piston to match that of the tank, but the size of the piston
could not be reduced too much, otherwise the mismatch would cause the flow to
leak through the gaps between the piston and the tank. Despite the unavoidable
problem, the velocity distribution (in an average sense) still displays a reasonable
‘constant’ acceleration and deceleration. The occurrence of the kinks equidistant in
time is due to the DPIV system which only allows velocity measurements at discrete
time intervals. We have performed computations for both the cases depicted in figures
7(b) and 7(c) and compared them to understand the role of the small variation in
acceleration seen in figure 7(c). Next we present results for different cases identified
at the end of § 1 as Cases A to D.

4.1. Case A

In this case, the acceleration of flow from zero to a final velocity of 100 mm s−1 was
achieved in 3 s via a uniform acceleration, and the corresponding results are shown
in figures 4 and 5 (case a). Experimentally obtained instantaneous integral curves
generated from the instantaneous velocity field are compared with the computed
streamline contours obtained up to t = 3.75 (non-dimensional time) in figure 8 for
the piston velocity–time profile shown in figure 7(b). These two sets of results are
shown in the first and middle columns of figure 8. Another case is computed using
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Figure 7. (a) A sketch of non-dimensional velocity–time profile for a tangent hyperbolic and
ramp-start flow. (b) Imposed piston velocity–time profile for the experimental results reported
in figures 4 and 5. (c) Measured velocity–time record at the centreline of the tunnel for the
case (b).

the measured velocity–time profile depicted in figure 7(c). The results for this case
are shown in the third column of figure 8. While the experimental results match very
well at early times with the computations performed with the piston velocity–time
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t = 0.50

t = 0.75

t = 1.00

t = 1.25

Figure 8. For caption see page 271.

record in figure 7(b), the starting vortex is seen to be larger than the computed result.
This under-estimation in the computation is due to the fact that the calculated wall
vorticity at early times is filtered by the numerical differencing procedure. At later
times, it is seen that the computation performed using the actual velocity distribution
(figure 7c) show a better agreement with the experimental data than that computed
with the piston velocity–time profile in figure 7(b). In figure 9, corresponding computed
vorticity contours are plotted and compared with the experimental data shown in
the first column. Similar to the streamline contour plots, the computations performed
with the actual velocity data show better match with the experimental data, especially
at later times, as seen at t = 3.75. Thus, it appears that the slight difference in
acceleration levels between the actual velocity data and the data from the constant
acceleration of the piston velocity leads to some differences in the flow evolution. We
should also point out that the actual velocity data are obtained after filtering the
high-frequency components and the absence of these components can also account
for the residual differences. The velocity data of figure 7(c) should be compared with
the record shown in figure 2 of Morikawa & Grönig (1995), where the measured
free-stream record showed the presence of very high-frequency fluctuations as the
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t = 1.50

t = 1.75

t = 2.00

t = 2.50

Figure 8. For caption see facing page.

flow reached the terminal constant-velocity stage. Since the results shown in figures
8 and 9 correspond to the maximum Re of 7968, which is a relatively low value to
record the effects of acceleration at α =30◦, another case is considered next, where
the terminal maximum Re is 35 000.

4.2. Cases B and C

Case B corresponds to the same free-stream speed as studied experimentally by
Morikawa & Grönig (1995) and is given by (1.1). The value of τ = 0.6 corresponds to
the physical time of 50 ms that was the dimensional start-up time scale in the experi-
ments. Likewise, the computation is carried out using (1.1) with τ = 0.6. Figure 10
compares the present computation with the results of Morikawa & Grönig (1995) at
t = 2.903. In figure 10(a), the experimental snapshot is shown, while in figure 10(b)
the computed streamlines are shown, when the free stream is established following
equation (1.1). It can be seen that the present computed results match the experi-
mentally visualized streamlines better than the computed results of Morikawa &
Grönig (1995) as depicted in figure 10(c). Particularly noticeable is the failure of the
computed results of figure 10(c) to capture the flattened bubble located over the top
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t = 2.75

t = 3.00

t = 3.50

t = 3.75

Figure 8. Flow field of an accelerating flow over a NACA 0015 aerofoil for A33 acceleration
case at Re = 7968 and α = 30◦. Comparison of experimental results (left) with computed
streamline contours calculated with the data of figure 7(b) (middle) and with the data of
figure 7(c) (right) from t = 0.5 to t = 3.75.

surface of the aerofoil in the experimental results. In contrast, this feature of the
separation bubble is clearly seen in figure 10(b). As discussed in Nair & Sengupta
(1997b, 1998), the computational results of figure 10(c) resemble a case computed
by the present method using the free-stream speed established by an impulsive start
condition. The distorted primary bubble with flattened top is captured by following
the correct free-stream speed variation, thus emphasizing the need to correctly specify
the start-up process.

To show this sensitivity to the start-up process, we have performed another
calculation (Case C) where the final free-stream speed is achieved following a ramp
start, i.e. the flow starts from zero velocity and reaches the terminal speed at t = τ .
Computed streamlines are shown in figure 10(d), and it is evident that the separation
bubble for this case is under-developed compared to that in figure 10(b). Also, the
secondary and tertiary vortices are either significantly weaker or not visible, while
the primary bubble covers and extends beyond the top surface. The reason for the
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t = 0.75

t = 1.50

t = 2.25

t = 3.00

t = 3.75

Figure 9. Vorticity field of an accelerating flow over a NACA 0015 aerofoil for A33
acceleration case at Re = 7968 and α = 30◦. Comparison of experimental results (left) with
computed vorticity contours calculated with the data of figure 7(b) (middle) and with the data
of figure 7(c) (right).

differences between this and Case B is the duration over which the acceleration is
applied. It has already been noted with respect to the experimental results in figures 4
and 5 that the acceleration effects are more significant when it is applied over longer
duration and are not strongly dependent on the level of acceleration. For Case C, the
acceleration is applied over a shorter duration (τ ) than Case B (as shown in figure 7a),
which is roughly three times longer than for Case C. In Nair & Sengupta (1997b), it
was noted that the most significant parameter is the first-vortex formation time. If the
acceleration time is lower than this, then one can consider the flow to be impulsively
started, otherwise detailed flow start-up has to be considered, as seen here. It is for this
reason that the computed flows past bluff bodies for impulsive start match well with
experimental results when the flow in the experimental facility is established quickly,
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Figure 10. Comparison of (a) experimental visualization of Morikawa & Grönig (1995)
with (b) present computational instantaneous streamlines for the acceleration following
equation (1.1). (c) Computed results by Morikawa & Grönig (1995) and (d) present computed
streamline following ramp start. (Note: All the results are shown for t = 2.903, and the
computations for (b) and (d) are performed based on the velocity record shown in figure 7(a)).
Computational vorticity contours by Morikawa & Grönig compared to (f) the present
computational results for the case shown in (b).

before the formation of the first vortex. This was verified in Nair, Sengupta &
Chauhan (1998) for flow past a rotating cylinder. Vorticity contours for Case B
are shown in figures 10(e) and 10(f ) at the same time, the former as computed by
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Figure 11. The integrated load and moment coefficients for tangent hyperbolic (square) and
ramp start (circle) as shown in figure 7(a).

Morikawa & Grönig (1995) and the latter as computed here. Both the calculations
use the non-inertial frame of reference. The other reason for the poor match of the
computational results of Morikawa & Grönig (1995) with the experimental results
could be the use of a lower-order method that filters high-wavenumber events that may
have significant effects on flow evolution. While the higher-order methods capture the
shear layer instabilities adequately, the same effects with lower-order methods require
very high grid resolution.

Cases B and C are calculated for longer duration in order to study the loads and mo-
ment acting on the aerofoil. This requires solving the pressure Poisson equation (3.8)
over the whole domain. Calculated lift, drag and pitching moment coefficients are
shown in figure 11 up to t =50. Although the flow may not remain two-dimensional
over long times, these results provide a qualitative picture and demonstrate that
the two strategies of flow start-up yield different time-averaged lift and moment
coefficients. Large jumps in the load and pitching moment coefficients displayed in
figure 11 are caused by the formation, growth and shedding of dynamic stall vortices
over the top surface.

A comparison of the two different start-up accelerations for the flow shows the load
to be different due to different unsteadiness caused by flow separation. Even though
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the loads for the two cases do not follow the same curve as in Lugt & Haussling
(1978) and Gendrich et al. (1995), they have the same order of magnitude and follow
similar trends. In Lugt & Haussling (1978) and Gendrich et al. (1995), acceleration
was completed by time t = 0.25, which is before the formation of the first leading-edge
bubble. Sarpkaya (1991) also obtained a similar trend for drag, following the same
curve for the case where the acceleration parameter Ap was greater than 0.27. For all
other cases where Ap < 0.27, the drag reached a quasi-steady state. In contrast, the
leading-edge vortices observed here are already formed before the acceleration phase
is completed and the detailed load variation depends on the formation time of the
first vortex and subsequent instabilities of the separated shear layer.

In both cases, there is little interaction between vortices shed from leading and
trailing edges at this Reynolds number and the angle of attack of the aerofoil, as also
noted in Huang & Lin (1995). The vortex shedding is predominantly from the leading
edge only, and is different from the Kármán vortex streets behind bluff bodies. For
the lower Reynolds number case shown in figure 8, the shear layer separated from
the leading edge does not shed clearly and interacts with the separated shear layer
from the trailing edge, causing slow time variation of physical variables in the wake.
Such an interacting leading-edge laminar separation bubble was also noted by Lin &
Pauley (1996), Zaman et al. (1989) and Sugavanam & Wu (1982). They concluded
that the low-frequency oscillation over the aerofoil is due to the vortex shedding from
laminar separation bubbles.

Similarly, comparing the present computations for flow past an aerofoil to that for
ellipses in Nair & Sengupta (1997a), it is noticed that the leading-edge stagnation
point does not move for the aerofoil at post-stall angles of attack of 30◦. Also, the rear
stagnation point is always near the trailing edge except when alleyways are formed.
This is due to the presence of the sharp trailing edge and the resultant interactions
of vortices in the wake are relatively weaker for aerofoils than to ellipses.

4.3. Case D

This case corresponds to the experimental results reported in Freymuth (1985) for the
uniform acceleration case at significantly higher angles of attack, while the maximum
Reynolds number is fixed at 5200. This particular case of uniform acceleration has a
higher acceleration level, with τ much larger than for the previous cases. Of all the
experimental cases in Freymuth (1985), 60◦ and 90◦ angle of attack cases are computed
because of the stronger vortical structures seen in the experimental visualizations, and
such cases have not been computed before. For the flow visualization in Freymuth
(1985), liquid titanium tetrachloride (TiCl4) is applied on the aerofoil surface, and
the ‘smoke’ produced by the evaporation of the injected liquid is accumulated in the
low-velocity recirculation zone. It is therefore difficult to give a proper interpretation
of the visualization pictures. These are in a strict sense not streaklines as the amount
of liquid injected is so large that the ‘smoke’ does not emanate from a single point.
The visualization pictures reveal a combination of high-stress and low-convection
pockets. Thus, the pictures can be compared qualitatively with vorticity and pressure
contours. Also, due to the slightly reflective surface of the aerofoil, a mirror image of
the detected structures is also captured in the visualization pictures.

4.3.1. Cases of α =60◦ and 90◦ for Re = 5200

Here, the Reynolds number is in the same range as the experiments of Case
A. But the angle of attack is increased so that the vortices shed from the leading
and trailing edges are more pronounced. Also, the acceleration level is 2.4 m s−2,
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t = 1.49

t = 1.60

t = 2.10

t = 2.40

Figure 12. For caption see facing page.

which is orders of magnitude higher than in our experimental results shown in
figures 4 and 5. Computed vorticity contours at discrete times are compared with
the flow visualization performed in Freymuth (1985) (see figure 12 for α = 60◦).
The match between the experiment and computation is striking for all the frames
up to t = 3.29, at least for the vortices that emanate from the leading edge of
the aerofoil. The agreement between the experiment and computations is less
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t = 2.73

t = 3.16

t = 3.29

t = 3.84

Figure 12. Comparison of present vorticity contours (right) with visualization pictures (left)
from Freymuth (1985) for Re =5200 and α = 60◦ and time increasing from t = 1.49 to t = 3.84.

satisfactory for the vortical structures released from the trailing edge of the aerofoil.
While two-dimensional calculations are capable of capturing vortices created by the
combined action of local flow acceleration followed by rapid deceleration near the
leading edge, vortices emerging from the trailing edge show a tendency of merging
in a two-dimensional simulation, as noted in Lesieur & Metais (1996). This so-called
backscatter problem was discussed in Mathaeus et al. (1991) and Brachet et al.
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t = 1.49 t = 2.73

t = 1.60 t = 3.16

t = 2.10 t = 3.29

t = 2.40 t = 3.84

Figure 13. Streamline contours at different times for Re =5200 and α =60◦ for the case
in figure 12.

(1994). It appears that in an actual flow, three-dimensionality plays a major role near
the trailing edge, which the present two-dimensional computations cannot capture.

In figure 13, the streamline contours are shown plotted at selected time instants
for the α = 60◦ case. For the early time up to t = 2.10, the bubble created on the
top surface near the leading edge keeps growing, while a secondary vortex is always
positioned near the leading edge. Subsequently, a trailing-edge bubble appears as can
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t = 1.49

t = 1.60 t = 3.16

t = 2.10 t = 3.29

t = 2.40 t = 3.84

t = 2.73

Figure 14. Total pressure contours at different times for Re = 5200 and α = 60◦ for the case
in figure 12.

be seen in the frame at t = 2.40. This bubble continues to grow, while the top bubble
continues to reduce in size. Soon after t = 3.29, the trailing-edge bubble is released as
can be seen at t =3.84. Thereafter, the primary bubble starts to grow again.

It was noted earlier that the flow visualization pictures display structures that
can be compared to vorticity and pressure contours. For this reason, total pressure
contours are plotted in figure 14 at selective time instants for the case of α = 60◦. At
t = 1.49 and t =1.60, the dye blobs are seen at those locations where the pressure
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t = 0.93

t = 1.92

t = 2.42

t = 2.92

t = 3.42

t = 3.90

Figure 15. Comparison of the present vorticity contours (right) with visualization pictures
(left) from Freymuth (1985) for Re =5200 and α = 90◦.

contours show major centres. Such a correspondence is not seen readily at later times
although a chain of vortices created by Kelvin–Helmholtz instability is seen to emerge
from the leading edge.

Next, we have computed another case given in Freymuth (1985) for an angle of
attack of 90◦ for the same Reynolds number. The computational results are compared
to the experimental results in figure 15 at selected times. This case resembles that of
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t = 0.93 t = 2.92

t = 1.92 t = 3.42

t = 2.42 t = 3.90

Figure 16. Streamline contours at different times for Re = 5200 and α = 90◦ for the
case in figure 15.

a normal flat plate, except that the vortices shed from the leading and trailing-edges
are dissimilar due to differences in shape and curvature of the leading and trailing
edges. Similar to the case shown in figure 12 for α = 60◦, the bubbles shed from
the top (clockwise vortices) also suffer Kelvin–Helmholtz instability and a train of
smaller vortices formed are captured quite accurately in the computation for all the
time frames shown. For similar reasons as cited for α = 60◦ case, the anticlockwise
vortices shed from the trailing edge show backscatter (vortex merger) while convecting
downstream, and the agreement with experimental results for the vortical structures
is less than satisfactory. In figure 16, the streamline contours are shown at the
same time instants as in figure 15. There are dissimilar bubbles downstream of the
aerofoil, with a larger vortex on the trailing-edge side than on the leading-edge side.
Both these vortices keep growing with time till t = 1.92 when the lower bubble is
marginally bigger than the upper one. One can also see an alleyway forming around
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the bubble on the upper side of the aerofoil. Despite this, the top bubble is seen to
grow more rapidly at t =2.42 than the lower bubble. However, at t =2.92, the top
bubble becomes bigger, while the vortex in the lower bubble starts to split into two. At
t = 3.42, the upper bubble grows further and the lower bubble has split into two, with
the rear stagnation point located at mid-chord on the top surface. In the last frame, at
t = 3.90, the top bubble detaches from the aerofoil causing the rear stagnation point
to move towards the leading edge on the top surface.

5. Proper orthogonal decomposition and disturbance energy creation
Here, we perform proper orthogonal decomposition (POD) of the vorticity data for

the two cases shown in figures 9 (for Re = 7968 and α = 30◦) and 12 (for Re = 5200
and α = 60◦) following the method of snapshots due to Sirovich (1987). For the former
case, we have used 35 snapshots starting from t = 0.1 up to t = 3.5 for the disturbance
vorticity; for the latter case, 40 snapshots have been used from t = 0.1 to 4.0. The
disturbance vorticity is calculated by subtracting the mean over this time period from
the instantaneous data. The details of the exact method are also given in Sengupta &
Dipankar (2005) and are not repeated here. Vortical structures obtained from the
POD analysis provide a statistical fit of the ensemble during the time period, by
minimizing the projection error of the data onto a set of deterministic eigenvectors.
The eigenvectors (X) are obtained from the linear algebraic equation: RX = λX, with
R the covariance matrix whose elements are formed from the disturbance vorticity
(ω′(xi, tm)) as: Rij = 1/M

∑M

m=1 ω′(xi, tm)ω′(xj , tm), with i, j = 1, 2, . . . . .N defined over
all collocation points totalling to N . These complete eigenvectors correspond to the
eigenvalues λ that define the probability of their occurrence and their sum gives the
total enstrophy of the system.

In figure 17, the cumulative enstrophy content, as given by the sum of a specific
number of eigenvalues divided by their total sum, is plotted along the ordinate and the
number of modes along the abscissa; a dotted line indicates 99 % level of enstrophy.
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Figure 18. The first three eigenvectors of disturbunce vorticity during the time range 0.1 to
4.0 for Re =5200 and α =60◦ case.

It is seen that for α =60◦, 11 modes are required to represent this level, while for
α = 30◦, only five modes are adequate to represent 99 % of the total enstrophy.

In figure 18, only the first three eigenvectors are shown for the case of Re = 5200
and α = 60◦. The first eigenvector shows a staggered, near-symmetric vortical structure
in the near wake. Additionally, a chain of small vortices is seen above the top vortical
structure. Since the first mode itself accounts for 70 % of total enstrophy, the primacy
of the Kelvin–Helmholtz (KH) instability is clear here. However, there are no such
instabilities seen in the lower half, near the trailing edge. The second eigenvector
accounts for smaller scale vortices in the near wake, while larger scale vortices formed
by merger are noted further downstream for all the eigenvectors. The second mode
accounts for nearly 6 %, while the third mode accounts for another 5 % of the total
enstrophy. Also, in the higher modes, the signature of KH instability is seen to be
smaller.
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Figure 19. The first three eigenvectors of disturbunce vorticity during the time range
0.1 to 3.5 for Re = 7968 and α = 30◦ case.

In figure 19, the first three eigenvectors are shown for the case of Re = 7968 and
α = 30◦. From figure 17, one notices that the first mode accounts for about 50 % of the
enstrophy; the second mode contributes another 30 % of the enstrophy and the third
mode takes the cumulative enstrophy content up to 92 %. None of the eigenvectors in
this case displays any traces of KH instability. Multiple vortical structures are bigger,
caused by laminar separation only. This is true for all three modes. The adherence
of vortical structures shed from the leading edge to the top surface causes convected
vortices to interact with the vortices shed from the trailing edge of the aerofoil.

Finally, we investigate the formation of a separation bubble by a diagnostic tool
used in Sengupta & Dipankar (2005). If we define the total mechanical energy
by E = p/ρ + V 2/2, then it is shown in Sengupta & Dipankar (2005, and in other
references contained therein), that the instantaneous distribution of disturbance energy
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Figure 20. Right-hand side of the disturbance energy equation (5.1) for Re = 7968 and
α = 30◦ for the times indicated.

(Ed) is given by

∇2Ed = 2ωm · ωd + ωd · ωd − V m · ∇ × ωd − V d · ∇ × ωm − V d · ∇ × ωd (5.1)

where the subscript m refers to a chosen equilibrium state and the subscript d refers
to an appropriate disturbance flow. Here, if we denote ωm =ω(t) and ωd = ω(t +
N�t) − ω(t), where N�t is a predetermined time interval, then the right-hand side
of the above Poisson equation provides the forcing that will dictate the instantaneous
distribution of Ed . In the present case, we have used N�t = 10−3, such that (5.1) gives
an almost instantaneous description of the disturbance energy creation. It has been
shown in Sengupta & Dipankar (2005) that the vortices are formed depending on the
sign of the right-hand side of (5.1), and that in turn indicates an energy source (when
it is negative) or energy sink (when it is positive).

In figure 20, contours of the right-hand side are plotted for the case of figure 9.
The similarity between these and the vorticity plots of figure 9 indicates that this
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type of vortex-dominated flow is dictated by the mechanism of disturbance energy
creation given by (5.1) that is adequate when using the solution of two-dimensional
Navier–Stokes equation.

6. Summary and concluding remarks
Incompressible accelerated flow past an aerofoil is studied here experimentally and

computationally at low Reynolds numbers and high angles of attack. Different types
of acceleration are considered, for which the major effects seen are related to unsteady
flow separation and their instabilities.

Specifically, a constant acceleration case and another case where the free-stream
speed reaches its final value via a non-uniform acceleration following a tangent
hyperbolic variation are studied. For both cases, limited experimental results are
available and additional experiments were conducted for NACA 0015 aerofoil
experiencing uniform acceleration for Re = 7968 and an angle of attack of α =30◦.
The experiments have been performed in a piston-driven closed-circuit water tunnel.
Experimentally obtained velocity and vorticity fields through PIV measurements have
been presented in figures 4 and 5 for three different levels of accelerations in the
piston-driven water tunnel. It is noted from these results that the unsteady separation
leading to bubble formation depends more on the duration of applied acceleration
than on the severity of the acceleration.

Computational results have been presented for different cases using an accurate
method to solve time-dependent two-dimensional Navier–Stokes equations in stream
function–vorticity formulation. This methodology has been well-tested on many
problems of unsteady flows undergoing transition. The case of uniform acceleration
that displayed maximum unsteady separation in the experiments performed have been
studied computationally and the results compared in figures 8 and 9. We have also
measured the flow velocity in the tunnel and noted some variations with the piston
velocity as shown in figures 7(b) and 7(c). The reason for the difference is traced to
the fluid loading in the tunnel causing a small deformation of the square section.
Despite the small variations between these two cases, we note only small differences
and found that the simulations performed with actual measured velocity match better
with the experimental data. Since the measured velocity was low-pass filtered, the
comparison should improve further, if the higher frequency components of the actual
velocity are also included.

To study the effects of different types of accelerations, experimental results of
Morikawa & Grönig (1995) were simulated for Re = 35 000 and α =30◦, when
the free-stream speed varies according to equation (1.1). Comparison between the
experimental results and computations shows very good agreement (see figure 10)
when the computations are performed with the actual time variation of the free
stream. Our computed results show even better agreement with the experiment than
that provided in Morikawa & Grönig (1995) by a finite volume formulation. This
establishes the superiority of the formulation and methods employed in the present
study.

Effects of higher angles of attack have been investigated by computing some cases
reported in Freymuth (1985) for Re =5200, with the flow experiencing acceleration
levels eighty times higher than in our experiments. The cases computed here are for
α = 60◦ and 90◦ and the comparisons are shown in figures 12, 13 and 15. Displayed
results in figures 12 to 16 show the central importance of Kelvin–Helmholtz (KH)
type instability of the separated shear layer at these high angles of attack. It is
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also noted that the agreement between the experiments and the computations is
particularly good for the top part of the flow that shows shedding of clockwise
vortices that undergo KH instability to create smaller vortices. The agreement is less
satisfactory for the weaker bubble created at the trailing edge. Calculations reveal
backscatter or merger of smaller vortices near the trailing edge, a well-known feature
of two-dimensional simulations. This leads us to believe that the flow is affected more
by three-dimensionality near the trailing edge than the leading edge. This can explain
computational observations.

The lack of small-scale vortices formed by KH instability for lower angles of attack
is also supported by the POD results shown in figures 17 to 19, for the cases whose
vorticity contours are shown in figures 9 and 12. It is noted that for the lower angle
of attack (α =30◦), there is no evidence of KH instability, and the bubble formed
near the leading edge slowly convects down the top surface and interact with vortices
formed at the trailing edge. The first eigenvector accounts for nearly 50 % of the
total enstrophy and overall only five modes are necessary to represent 99 % of total
enstrophy. For the α = 60◦ case, first mode accounts for 70 % of total enstrophy
and 11 modes are needed to describe 99 % of total enstrophy. It is noted that the
vortical structures in the near wake are elongated in the streamwise direction for the
low angle of attack case, while for the higher angle of attack, the structures occupy
the full base region. Finally, vortex creation by the disturbance energy description of
Sengupta & Dipankar (2005) is analysed for a case tested and computed here. Close
correspondence of vortex location with the location of the major disturbance sources
and sinks establishes the utility of (5.1) as a diagnostic tool to predict flow separation.
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